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[4] AUDRINO, F.; BÜHLMANN, P.. Tree-structured generalized autoregres-
sive conditional heterocedastic models. Journal of the Royal Statistal
Society, Series B, 63(4):727–744, 2001. 5

[5] BERNDT, E.; HALL, B.; HALL, R. ; HAUSMAN, J.. Estimation and
inference in nonlinear structural models. Annal of Economic Social
Measurements, 3(4):653–665, 1974. A

[6] BOLLERSLEV, T.. Generalized autoregressive conditional heteroskedas-
ticity. Journal of Econometrics, 21:307–328, 1986.

[7] CARVALHO, A.; SKOULAKIS, G.. Ergodicity and existence of moments
for local mixture of linear autoregressions. Technical report, Northwest-
ern University, 2004. 2

[8] CARVALHO, A.; TANNER, M.. Mixture-of-experts of autoregressive time
series: asymptotic normality and model specification. IEEE Transactions
on Neural Networks, Forthcoming, 2005a. 5

[9] CARVALHO, A.; TANNER, M.. Modeling nonlinear time series with
mixture-of-experts of generalized linear models. The Canadian journal
of Statistics, Forthcoming, 2005b. 2, 4

DBD
PUC-Rio - Certificação Digital Nº 0421015/CA
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A
EM Algorithm

The estimation of the parameter vector θ can be performed by maximizing
the quasi-likelihood of the density function in (3-1). We can write the conditional
likelihood based on a sample {yt}T

t=1. The log-likelihood to be maximized over Θ,
the parametric space, is given by

logLT (θ) =
T∑

t=1

log

[∑

i∈T
Bi(xt; θi)π(yt|xt; ψi)

]
.

Numerical optimization can carried out by using the EM algorithm of (19).
The idea behind EM algorithm is to maximize a sequence of simple functions which
leads to the same solution as maximizing a complex function.

We define the probability that the local model i ∈ T has generated the output
yt as

pi(yt) =
Bi(xt; θi) π(yt|xt; ψi)∑

j∈TBj(xt; θj) π(yt|xt; ψj)
. (A-1)

It is important to note that a parent node i ∈ J has the probability pt,i =

pt,2i+1 + pt,2i+2.
We define our estimation algorithm following (36). The EM algorithm de-

mands the definition of a complete dataset Xt and an incomplete dataset Yt. We
introduce an indicator variable zt = {zit}, i ∈ T, such that only one of the zit is
equal to one each time to simplify the likelihood function. If the variables zit are
known, the maximization problem is divided into a set of regression problems for
each model and a classification problem for the functions Bi(·).

Since the indicator variables are not known we shall define a probabilistic
model which links these variables with the observed data (i.e. the complete dataset
probabilistic model). This model can be written in terms of zit as follows:

P(yt, zit|xt; θ) = Bi(xt; θi)π(yt|xt; ψi) (A-2)

=
∏

i∈T
[Bi(xt; θi)π(yt|xt; ψi)]

zit .

The log-likelihood lc(θ) = logLT (θ) of the complete dataset (i.e. considering
the equation (A-2)) based on a sample {yt}T

t=1 is that such

DBD
PUC-Rio - Certificação Digital Nº 0421015/CA
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lc(θ) =
T∑

t=1

∑

i∈T
zit [log Bi(·) + log π(yt|xt; ψi)] (A-3)

Calculating the expected value of the log-likelihood of the complete dataset
(E-Step), it follows that:

Q(θ; θ(k)) = E [E [lc(θ)|Y] |X] (A-4)

=
T∑

t=1

∑

i∈T
E [zit (log Bi(·) + log π(yt|xt; ψi))]

=
T∑

t=1

∑

i∈T
E[zit] (log Bi(·) + log π(yt|xt; ψi))

=
T∑

t=1

∑

i∈T
pt,i [log Bi(·) + log π(yt|xt; ψi)].

The expected value of zit is the following

E[zit|Y] = P(zit = 1|yt,xt,θ) (A-5)

=
P(zit = 1|xt, θ)P(yt|zit = 1,xt,θ)

P(yt|xt, θ)

=
Bi(·)π(yt|xt; ψi)∑

j∈TBj(·)π(yt|xt; ψj)

= pi(yt).

Maximizing (A-4) with respect to the parameter vector θ, we find

θ(k+1) = arg max
θ

T∑
t=1

∑

i∈T
h

(k)
t,i

[
log Bi(xt; θ

(k)
i ) + log π(yt|xt; ψ

(k)
i )

]
. (A-6)

Analyzing the equation (A-6), we note that the parameters θi influence
Q(·) only through the term pt,i log Bi(·) and the parameters ψi through the term
pt,i log π(·). Thus we can split the maximization problem as follows:

ψ
(k+1)
i = arg max

ψi

T∑
t=1

pt,i log π(yt|xt; ψ
(k)
i ) (A-7)

θ
(k+1)
i = arg max

θi

T∑
t=1

∑

i∈T
pt,i log Bi(xt; θ

(k)
i ) (A-8)

The maximization problem for the expert parameter vector ψi is a weighted
least squares problem. The maximization of (A-8) is a complex non-linear opti-
mization problem, which can be solved using numeric algorithms.

In order to introduce a general equation to estimate the parameters βi, we
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must define the following notation. Let xt,j be the j-th element in x̃t if j > 0 and
1 otherwise. Furthermore, x̃t,j̄ is the vector x̃t without xt,j . Following the same
notation, we define βī as the β vector without the βi element.

The general equation for estimate the linear parameters is

β
(k+1)
ij =

∑T
t=1 pt,i xt,j

(
yt − β

′(k)

ij̄
x̃t,j̄

)

∑T
t=1 pt,i x2

t,j

(A-9)

Then, we define the general equation to estimate the σi, ∀i ∈ T:

σ2
i
(k+1)

=

∑T
t=1 pt,i

(
yt − β

′(k)
i x̃t

)2

∑T
t=1 pt,i

. (A-10)

The quasi-Newton optimization algorithm is used to estimate the parameters
of the logistic function. We can write the equation (A-8) as follows:

θ
(k+1)
i = arg max

θi

T∑
t=1

∑

i∈T
pt,i log

(∏

j∈Ji
g((−1)χJi∪{i}(2j+1) xt; θ

(k)
j )

)
(A-11)

where χJi∪{i}(2j + 1) is equal to 1 if 2j + 1 ∈ Ji ∪ {i} and 0 otherwise. It is easy
to show that this notation is equivalent to that in equation (3-2).

To estimate the parameters of the nodes J of the tree, we need so select a node
H ∈ J and then estimate just the parameters of the logistic function gH . We select
the sequence of H in a increasing order, beginning with H = 0, to estimate all the
logistic function parameters.

Only two sets Ji ∀i ∈ J ∪ T have the node H as the last node: J2H+1 and
J2H+1. As a result, we can write B2H+1 and B2H+2 as functions of the previously
estimated parameters.

B2H+1 = [1− g(xt; νH)]
∏

j∈JH
g((−1)χJH∪{H}(2j+1) xt; νj) (A-12)

B2H+2 = g(xt; νH)
∏

j∈JH
g((−1)χJH∪{H}(2j+1) xt; νj) (A-13)

Rewriting the equation (A-11) using this result, we have

ν
(k+1)
H = arg max

νH

T∑
t=1

2H+2∑
i=2H+1

pt,i log Bi(xt; θ
(k)
i ) (A-14)

= arg max
νH

T∑
t=1

pt,2H+1 log B2H+1(·) + pt,2H+2 log B2H+2(·)

= arg max
νH

T∑
t=1

pt,2H+1 log gH(·) + pt,2H+2 log(1− gH(·))
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Then, the BHHH algorithm (5) is used to find the parameter estimates. The
differentiation of the previous equation is then calculated.

∂

∂νH

Q(θ; θ(k)) =
T∑

t=1

∂

∂νH

[−γH(xsH ,t − cH)

σ̂sH

]
[(pt,2H+1 + pt,2H+2) gH(·)− pt,2H+1] .

We adopt the following notation: p
(k)
t = [pt,2H+1 − g

(k)
H pH ] and C

(k)
t =

(xsH,t−c
(k)
H )

σsH
.

So we can write the update rule as

ν
(k+1)
H = ν

(k)
H + λk





T∑
t=1

p
(k)
t

2


 C

(k)
t

2 −C
(k)
t γ

(k)
H

σ̂sH

−C
(k)
t γ

(k)
H

σ̂sH

γ
(k)
H

2

σ̂2
sH








−1
T∑

t=1

p
(k)
t


 −C

(k)
t

γ
(k)
H

σ̂sH


 .

(A-15)
Then, the parameter estimation algorithm can be summarized as follows:

1. The probabilities p
(k)
t,i are calculated trough equation (A-1).

2. The local model parameters ψ
(k+1)
i are then estimated using (A-9) and (A-

10).

3. The gating parameters ν
(k+1)
j , ∀j ∈ J, are calculated through (A-15).

4. These steps are performed until the square error between θ(k) and θ(k+1) is
small enough.
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B
Identifiability

To prove the identifiability of the Tree-MM models, we need to define some
concepts and assumptions. First, we define de concept of a sub-tree and then state
two assumptions to establish the theorem of identifiability of the Tree-MM models.

Let JT be a tree with sets J, T and S, where S is the set of indexes sj, ∀j ∈ J
and parameter vector θ. We define a subtree JTk as the tree beginning at node k,
with the sets Jk ⊆ J, Tk ⊆ T and Sk ⊆ S, where i ∈ JTk ⇔ k ∈ Ji ∪ {i} and
parameter vector θk. For example, assume the tree JT = {0, 1, 2, 3, 4, 5, 6, 11, 12}
then JT2 = {2, 5, 6, 11, 12}.

Assumption 7 Let fk(yt|xt; θk) be the conditional p.d.f. of the subtree JTk. Then

∀k ∈ J, f2k+1(yt|xt; θ
2k+1) 6= f2k+2(yt|xt; θ

2k+2).

This assumption guarantees that our tree is irreducible in the sense that any
split cannot be changed by a subtree or by a local model.

Assumption 8 We assume that for any tree JT and all sub-trees JTk:

1. The parameters γj > 0,∀j ∈ J;

2. ∀j ∈ J2k+1, if sj = sk then cj < ck;

3. ∀j ∈ J2k+2, if sj = sk then cj ≥ ck.

These assumptions together ensure that the sets J, T and S uniquely specify
any tree.

Lemma B.1 Under Assumptions (7) and (8), a tree JT is uniquely specified and the

parameter vector θ has a unique representation.

PROOF. We start proving irreducibility. Suppose that for any node k ∈ J,
f2k+1(yt|xt; θ

2k+1) = f2k+2(yt|xt; θ
2k+2). So, fk = gk(·)f2k+1 +(1−gk(·))f2k+2 =

f2k+1 = f2k+2. Then we can change the node k by the node 2k + 1 or 2k + 2. If
f2k+1(·) 6= f2k+2(·), ∀k ∈ J, then the tree cannot be reduced so it is irreducible.

Now, suppose there is an irreducible tree JT. On the first split at s0, c0 can
assume any value in R. Now consider the sub-trees JT1 and JT2. Following the
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condition (8), on the next split at sk = s0, k ∈ J1, ck can assume any value in
(−∞, c0) and on the next split at sl = s0, l ∈ J2, cl can assume any value in [c0,∞).
So, the values of ck and cl cannot be interchanged. Repeating this argument for all
splits, and considering that the transition has the same shape (which is guaranteed
by the constraint over the γs), we show that any irreducible tree under Assumption
(8) is uniquely specified.

Q.E.D.

The next theorem gives the conditions under which the Tree-MM model is
identifiable.

Teorema B.2 Under Assumptions (7) and (8), the tree mixture-of-expert structure,

as presented in (3-1), is identifiable, in the sense that, for a sample {yt;xt}T
t=1, and

for θ1, θ2 ∈ Θ
T∏

t=1

f(yt|xt; θ1) =
T∏

t=1

f(yt|xt; θ2) , a.s.

is equivalent to θ1 = θ2.

PROOF. Suppose that f(yt|xt; θ1) = f(yt|xt; θ2), for any sequence {yt;xt}T
t=1.

Therefore, we have
∑

i∈T1

Bi(xsi
; θ1i)π(yt|xt; ψ1i) =

∑

i∈T2

Bi(xsi
; θ2i)π(yt|xt; ψ2i). (B-1)

Considering the Lemma B.1, T1 = T2 = T; furthermore, if ψ1i = ψ2i then
π(yt|xt; ψ1i) = π(yt|xt; ψ2i). Then we can write this equation as

∑

i∈T
(Bi(·; θ1i)−Bi(·; θ2i))π(yt|xt; ψi) = 0, (B-2)

where ψi = ψ1i = ψ2i.
We have to show that Bi(·; θ1i) − Bi(·; θ2i) = 0. Following the definition of

Bi(·; ·) in equation (3-2) and the definition of the logistic function, we can write
Bi(·; ·) as a product of logistic functions, then

g0(·; ν10)
∏

k∈Ji
gk(·; ν1k) = g0(·; ν20)

∏

k∈Ji
gk(·; ν2k). (B-3)

If we show g0(·; ν10) = g0(·; ν20), then we can show iteractively that
Bi(·; θ1i) = Bi(·; θ2i):

g0(·; ν10) = g0(·; ν20), (B-4)
1

1 + e−γ10(xs0,t−c10)
=

1

1 + e−γ20(xs0,t−c20)
, (B-5)

which is true only if (γ10, c10) = (γ20, c20).
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Concluding, we have shown that f(yt|xt; θ1) = f(yt|xt; θ2) implies θ1 = θ2.
Thus,

T∏
t=1

f(yt|xt; θ1) =
T∏

t=1

f(yt|xt; θ2), a.s.

is equivalent to θ1 = θ2.

Q.E.D.

DBD
PUC-Rio - Certificação Digital Nº 0421015/CA



C
Stationarity and Geometric Ergodicity

As in the study of autoregressive processes, the most fundamental issues
involve finding sufficient conditions to ensure the stochastic stability of the process.
In this case, we need to know under which conditions a Tree-MM process with only
autoregressive local models (i.e. xt contains only lags of yt) will be stationary.

Some results on the stability of mixture of experts were shown in (69). In
that case, the conditions were proved for a MixAR(m; d) model. We can use the
same results because the limiting behavior of the multinomial logits and the B(·)
functions are similar.

Set αk ≡ max
i∈T

|βik|, k = 1, . . . , p, where βik is the k-th component of βi.
Then we have the following results:

Teorema C.1 Let {yt}t≥0 follow a Tree-MM model (3.1) with AR(p) local models.

Assume that the polynomial

P(z) = zd −
p∑

k=1

αkz
d−k ; z ∈ C

has all its zeros in the open unit disk, z < 1. Then the vector process yt has a unique

stationary probability measure, and is geometrically ergodic.

PROOF. To use the results of (69), we need to show some similarities between the
multinomial logit function and the B(·) function. We define B(1) as the left most
expert of the tree and B(J) as the right most expert of the tree. Obviously, B(1) is a
product of 1 − g(·) functions and B(J) is a product of g(·) functions. Furthermore,
any B(j) for j = 2, . . . , J − 1 has at least one term g(·) and one term 1− g(·).

If we satisfy the following conditions, we can show the equivalence of the
proofs.
(i) B(1) → 1 for ys(1) → −∞
(ii) B(1) → 0 for ys(1) →∞
(iii) B(J) → 1 for ys(J) →∞
(iv) B(J) → 0 for ys(J) → −∞
(v) B(j) → 0 for ys(j) → ±∞.
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We know that g(xt,νk) → 1 for ysk
→∞ and g(xt,νk) → 0 for ysk

→ −∞.
Consequently, [1 − g(xt,νk)] → 0 for ysk

→ ∞ and [1 − g(xt, νk)] → 1 for
ysk

→ −∞. Then

lim
y

s(1)
→−∞

B(1)(·) = lim
y

s(1)
→−∞

∏
[1− g(·)]

=
∏

lim
y

s(1)
→−∞

[1− g(·)]
= 1,

such that Condition (i) holds.
Conditions (ii)–(v) can be verified using the same steps. Consequently, the

results of (69) hold for the Tree-MM model.

Q.E.D.
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D
Proofs of Theorems

We follow (64), to prove the existence, consistency and asymptotic normality
of the QMLE. Besides, we define some notation to make the proofs clearer.

Define ft ≡ f(yt|xt; θ) and f ∗t ≡ f(yt|xt; θ
∗). Following this notation,

we also define πit ≡ π(yt|xt; ψi), π∗it ≡ π(yt|xt; ψ
∗
i ), Bit ≡ Bi(xt; θi) and

B∗
it ≡ Bi(xt; θ

∗
i ). Furthermore define recursively fk,t = (1 − g(xsk

; νk))f2k+1,t +

g(xsk
; νk)f2k+2,t, for all k in J, and fk,t = πkt, for all k in T.

D.1
Proof of Theorem 4.1

We need to satisfy Assumptions 2.1, 2.3 and 2.4 of Theorem 2.13 in (64),
show that |LT (θ)| < ∞, and that the QMLE has a unique maximum at θ∗.

Assumption 2.1 is satisfied by Assumption 1, and Assumption 2.3 is satisfied
by Assumption 2 and Lemma E.1. Assumption 2.4 and |L(θ)| < ∞ are satisfied by
Lemma E.1. So we need to show that LT (θ) has a unique maximum at θ∗.

To show that LT (θ) is uniquely maximized at θ∗, we follow (39) writing the
maximization problem as follows:

max
θ∈Θ

[LT (θ)− LT (θ∗)] = max
θ∈Θ

E
[
log

f ∗t
ft

− ft

f ∗t
− 1

]
.

Furthermore, for any x > 0, m(x) = x− log(x) ≤ 0, then

E
[
log

f ∗t
ft

− ft

f ∗t

]
≤ 0.

Given that m(x) archives its maximum at x = 1, E[m(x)] ≤ E[m(1)] with
equality holding almost surely only if f ∗t = ft with probability one. By the mean
value theorem, it is equivalent to show that

(θ − θ∗)′
∂ log ft

∂θ
= 0 (D-1)

almost surely. A straightforward application of Lemma E.2 shows that it happens if,
and only if, θ = θ∗ with probability one, which completes the proof.

C.Q.D
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D.2
Proof of Theorem 4.2

We must satisfy the conditions of Theorem 3.5 in (64), which are Assumptions
2.1, 2.3, 2.4, 3.1 and 3.2’. Assumptions 2.1, 2.3, 2.4 and 3.2’ are satisfied by
Assumptions 1–3 (see the proof of Theorem 4.1). Assumption 3.1 states that:

(a) EG(log ft) < ∞, ∀t = 1, 2, . . .;

(b) EG(log ft) is continuous in Θ; and

(c) {log ft} obeys the uniform law of large numbers (ULLN).

it is clear that EG(log ft) ≤ logEG(ft) ≤ logEG(sup
t

ft). But sup
t

ft =

∆ < ∞, then log

[
EG(sup

t
ft)

]
= log ∆ < ∞. Then, Condition (a) is satisfied.

In addition, note that log(·), Gt and ft are continuous, measurable, and integrable
functions, so ht = Gt log ft is also continuous, measurable, and integrable. Then,∫

htdy is continuous and Condition (b) is satisfied. Finally, Condition (c) is satisfied
by Lemma E.7. As a result, θ̂T → θ∗ almost surely.

C.Q.D

D.3
Proof of Theorem 4.3

To prove this theorem, we must satisfy Assumptions 2.1, 2.3, 3.1, 3.2’, 3.6,
3.7(a), 3.8, 3.9 and 6.1 in (64). Assumptions 2.1, 2.3, 3.1, 3.2’ are satisfied by
Assumptions 1–6 (see proof of Theorem 4.2). Assumption 3.6 is satisfied by Lemma
E.1, Assumption 3.7(a) is satisfied by Lemma E.4, Assumption 3.8 by Lemmas E.5
and E.7, Assumption 3.9 by Lemma E.6, and Assumption 6.1 is shown here.

Assumption 6.1 requires that
{
T−1/2∂θft|θ∗

}
obeys a central limit theorem

with covariance matrix B(θ∗), where B(θ∗) is O(1) and uniformly positive definite.
First note that, from lemma E.8, {∂θft|θ∗} is a martingale difference process. Then
we must show the following to satisfy assumption 6.1:

(a) T−1
∑T

t=1 ∂θft|θ∗∂θ′ft|θ∗ a.s.→ E(∂θft|θ∗∂θ′ft|θ∗);

(b) the sequence is strictly stationary.

Condition (a) is readily verified by Lemmas E.7 and E.4. Condition (b) is satisfied
by Assumption 4. Hence, satisfying these assumptions, we can show that

√
T

(
θ̂T − θ∗

)
D→ N(0, I−1),
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where I(θ∗) ≡ A−1(θ∗)B(θ∗)A−1(θ∗) and

A(θ∗) = E

[
−∂2LT (θ)

∂θ∂θ′

∣∣∣∣∣
θ∗

]
,

B(θ∗) = E

[
∂LT (θ)

∂θ

∣∣∣∣∣
θ∗

∂LT (θ)

∂θ′

∣∣∣∣∣
θ∗

]
,

where LT (θ) = log
∑

i∈TBi(xt; θi) π(yt|xt; ψi).

C.Q.D

DBD
PUC-Rio - Certificação Digital Nº 0421015/CA



E
Lemmas

Lemma E.1 Under Assumptions (2)–(3) f(yt|xt; θ), defined in (3-1), is a measur-

able function of Y t = [yt,mathbbxt]
′, limited, positive and continuously differen-

tiable of order n on Θ.

PROOF. Trivially, π(yt|xt; ψi) and g(xsjt; νj) are continuous, mensurable, finite,
positive and differentiable functions of Y t. The function f(yt|xt; θ) is a sequence
of sums and products of these functions. As a result, f(yt|xt; θ) is a continuous,
mensurable, finite, positive and differentiable function of Y t.

C.Q.D

Lemma E.2 Let d be a constant vector with the same dimension of θ. Then it

follows that

d′
(

∂ log ft

∂θ

)
= 0 a.s.

if, and only if, d = 0.

PROOF. First write
d′

(
∂ log ft

∂θ

)
= d′

1

ft

∂ft

∂θ
= 0. (E-1)

From Lemma E.1, we know that ft > 0. Rewriting (E-1), and considering that we
can write in terms of ∂/∂ψi and ∂/∂νk, for all i ∈ T and k ∈ J,

d′
∂πit

∂ψi

= 0 and [f2k+1,tgkt − f2k+2,t(1− gkt)]d
′∂[−γk(yt − ck)]

∂νk

= 0,

which are both functions of yt. By the non-degeneracy condition, and supposing
that yt is not null for all t = 1, 2, . . . , T , then d′ ∂ft

∂θ
= 0 if, and only if, d = 0.

C.Q.D

Lemma E.3 Under Assumptions 2, 5 and 6, E(log ft) < ∞.

PROOF. First we make

log ft = log
∑

i∈T
Bitπit < log

∑

i∈T
πit < log #T+ log sup

i∈T
πit. (E-2)
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Let πIt = π(yt|xt;x
′
tβI , σ

2
I ) = supi∈T πit, then equation (E-2) becomes

log πIt = −1

2
log 2πσ2

I −
1

2σ2
I

(x′tβI − yt)
2. (E-3)

Taking the expected value of (E-3), and under Assumptions 2 and 5,

E [log πIt] = −1

2
log 2πσ2

I −
1

2σ2
I

E
[
(x′tβI − yt)

2
]

< ∞. (E-4)

C.Q.D

Lemma E.4 Under Assumptions 2, 4, 5 and 6,

E
(

∂ log ft

∂θ

)
< ∞ and

E
(

∂ log ft

∂θ

∂ log ft

∂θ′

)
< ∞.

PROOF. Let ∂θ ≡ ∂
∂θ

. Then we make

∂θ log ft =
1

ft

∂θft =
1

ft

∑

i∈T
πit∂θBit + Bit∂θπit ≤ ∆π,f

∑

i∈T
∂θBit + ∆B

∑

i∈T
∂θπit,

(E-5)
where ∆π,f = supi(f

−1
t πit) < ∞ and ∆B = supi f

−1
t < ∞.

This equation can be written in terms of ∂ψi
≡ ∂/∂ψi and ∂νj

≡ ∂/∂νj . Let
∆π = supi πit, then

∂ψi
πit = πit∂ψi

log πit ≤ ∆π∂ψi
log πit, (E-6)

∂νj
Bit = Bit(−gjt)(1− gjt)∂νj

[−γj(xsj
− cj)] ≤

∣∣∂νj
[−γj(xsj

− cj)]
∣∣ .(E-7)

But ψi = [β0i, . . . , βpi, σ
2
i ]
′, thus the right size of equation (E-6) can be

written as

∆π∂βki
log πit = −∆π

x̃kt(x̃′tβ − yt)

σ2
i

, (E-8)

∆π∂σ2
i
log πit = ∆π

(
− 1

2σ2
i

+
(x̃′tβ − yt)

2

2σ4
i

)
, (E-9)

where x̃kt is the k-th element of the vector x̃t.
Using the same argument, we can write the right side of equation (E-7) as

∣∣∂γj
[−γj(xsj

− cj)]
∣∣ =

∣∣−(xsj
− cj)

∣∣ , (E-10)
∣∣∂cj

[−γj(xsj
− cj)]

∣∣ = |γj| . (E-11)

It is readily verified that, under Assumptions 2, 4 and 5, the expected values of
equations (E-8) – (E-11) are finite. Furthermore, under Assumption 6, the expected
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value of any product between these equations is also finite.

C.Q.D

Lemma E.5 Under Assumptions 2, 4, 5 and 6, E(∂2 log ft/∂θ∂θ′) < ∞.

PROOF. Assume that ∂θθ′ ≡ ∂
∂θ∂θ′ . Then we make

∂θθ′ log ft = −∂θ log ft∂θ′ log ft + f−1
t ∂θθ′ft. (E-12)

Using the product law of differentiation, we can write ∂θθ′ft as a sum of
products of ∂θBit and ∂θπit with ∂θθ′Bit and ∂θθ′ log πit. Using the results of lemma
E.4, the expected value of the product of any two of these derivatives is finite. So,
we must show that E[∂θθ′Bit] < ∞ and E[∂θθ′ log πit] < ∞. Considering that
ψi and ψj do not have elements in common, and that Bit depends only on the
vectors νj , j ∈ Ji, we can write these derivatives in terms of ∂ψiψ′i and ∂νjν′k . But
ψi = [β0i, . . . , βpi, σ

2
i ]
′ and νj = [γj, cj]

′. Then

∂βliβki
logπit = −σ−2

i x̃ktx̃lt, (E-13)

∂βliσ
2
i
logπit = σ−4

i x̃lt(x̃′tβ − yt), (E-14)

∂σ2
i σ2

i
logπit = (2σ4

i )
−1σ−8

i (x̃′tβ − yt)
2, (E-15)∣∣∣∂νkν′jBit

∣∣∣ <
∣∣∣∂νk

[−γk(xsk
− ck)]∂ν′j [−γj(xsj

− cj)]
∣∣∣ . (E-16)

It is readily verified that, under Assumptions 2, 4 and 5, the expected values
of equations (E-13)–(E-16) are finite.

C.Q.D

Lemma E.6 Under Assumptions 2, 4, 5 and 6, E(∂2 log ft/∂θ∂θ′|θ∗) is negative

definite.

PROOF. If E(∂2 log ft/∂θ∂θ′|θ∗) is negative definite, then log ft has a maximum in
Θ. We know by Lemma E.2 that log ft has only one maximum or minimum in Θ;
thus we only have to show that ft must have a maximum.

Trivially, the Gaussian functions πit have a maximum. If we multiply by a
constant or monotone functions or add functions with a maximum, the function still
has a maximum. The logistic function is a monotone function (in relation to its
parameters and the variable). Hence, Bitπit has a maximum and ft has a maximum,
and E(∂2 log ft/∂θ∂θ′|θ∗) is negative definite.

C.Q.D

Lemma E.7 Under Assumptions 2, 4, 5 and 6,
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(a) T−1
∑T

t=1 ft
a.s.→ E(ft);

(b) T−1
∑T

t=1 ∂θft
a.s.→ E(∂θft); and

(c) T−1
∑T

t=1 ∂θθ′ft
a.s.→ E(∂θθ′ft).

PROOF. First we must show that T−1
∑T

t=1 yt
a.s.→ E(yt). Once yt is a mixing process,

we just need to show that E
(
T−1

∑T
t=1 yt

)
= E(yt) and that V

(
T−1

∑T
t=1 yt

)
<

∞. The first assumption is trivially satisfied because yt is stationary. The second
assumption is satisfied because

∑
E(ytyt−k) < ∆ < ∞.

Lemma E.1 ensures that ft, ∂θft and ∂θθ′ft are continuous functions of yt

given θ. Besides, Lemmas E.3, E.4 and E.5 guarantee that the expected value is also
finite. Once the functions are continuous and the expected value is finite, we can
extend the results of yt for ft, ∂θft and ∂θθ′ft, thereby completing the proof.

C.Q.D

Lemma E.8 Under Assumptions (2)–(5), ∂LT (θ)/∂θ|θ0 is a martingale difference

in terms of Ft, the σ-field generated by {yt,xt, . . .}, where LT (θ) = log f(yt|xt; θ)

and f(yt|xt; θ) is defined in (3-1).

PROOF. We prove following the definition of martingale differences:

(a) E [∂LT (θ)/∂θ|θ∗ ] < ∞;

(b) E [∂LT (θ)/∂θ|θ∗|Ft−1] = 0

The first condition is satisfied by Lemma E.4. The second condition is
satisfied by Theorem 4.1 and Lemma E.4. Satisfying Conditions (a) and (b),
∂LT (θ)/∂θ|θ∗ is a martingale difference in terms of Ft.

C.Q.D
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